	EXAMEN DU BACCALAURÉAT SESSION 2022	ANCIEN RÉGIME
RÉPUBLIQUE TUNISIENNE	ÉPREUVE PRATIQUE D'INFORMATIQUE	
*** MINISTÈRE DE L'ÉDUCATION	Sections : Mathématiques, Sciences expérimentales et Sciences techniques	
	Coefficient de l'épreuve : 0.5	Durée : 1h

Important:

- 1. Une solution modulaire au problème posé est exigée.
- 2. Enregistrer au fur et à mesure votre programme dans le répertoire **Bac2022** se trouvant sur la racine **C**: en lui donnant comme nom votre numéro d'inscription (6 chiffres).

Le nombre lisse

Un nombre **N** est dit **lisse** lorsque son **plus grand diviseur premier** est inférieur ou égal à la racine carrée du nombre **N**.

Exemples:

- **N** = **60**, les diviseurs de 60 sont : 1, 2, 3, 4, 5, 6, 10, 12, 15, 30 et 60. Son plus grand diviseur premier est 5 et puisque $5 \le \sqrt{60} = 7.746$..., donc **60 est un nombre lisse**.
- N = 49, les diviseurs de 49 sont : 1, 7 et 49. Son plus grand diviseur premier est 7 et puisque $7 \le \sqrt{49} = 7$ donc 49 est un nombre lisse.
- N = 22, les diviseurs de 22 sont : 1, 2, 11 et 22. Son plus grand diviseur premier est 11 et puisque $11 > \sqrt{22} = 4.690$..., donc 22 n'est pas un nombre lisse.

Soit l'algorithme de la fonction **PREMIER** suivant qui permet de vérifier la primalité d'un entier naturel **n** :

- 0) DEF FN PREMIER (n : Entier) : Booléen
- 1) i**←**2

TantQue (i <= n DIV 2) ET (n MOD i ≠ 0) Faire i←i+1

Fin TantQue

- 2) PREMIER \leftarrow (i > n DIV 2) ET (n >1)
- 3) Fin PREMIER

Travail demandé:

Ecrire un programme Pascal permettant d'afficher tous les nombres **lisses** compris entre deux bornes p et q saisies avec 3 en faisant appel à la fonction**PREMIER**.

Exemple d'exécution

Pour p = 5 et q = 35, le programme doit afficher :

Les nombres lisses compris entre 5 et 35 sont : 8 9 12 16 18 24 25 27 30 32

Grille d'évaluation

Questions	Nombre de points
Décomposition en modules	2
Appels des modules	2
Si exécution et tests réussis avec respect des contraintes	16
Sinon	0
Structures de données adéquates au problème posé	3
Traduction de la fonction PREMIER	5
Saisie de p et q avec respect de contraintes	3
Affichage conforme à l'exemple	5